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1.2 Gaussian Elimination

The algebraic method introduced in the preceding section can be summarized as follows: Given a
system of linear equations, use a sequence of elementary row operations to carry the augmented
matrix to a “nice” matrix (meaning that the corresponding equations are easy to solve). In Example
1.1.3, this nice matrix took the form  1 0 0 ∗

0 1 0 ∗
0 0 1 ∗


The following definitions identify the nice matrices that arise in this process.

Definition 1.3 Row-Echelon Form (Reduced)

A matrix is said to be in row-echelon form (and will be called a row-echelon matrix)
if it satisfies the following three conditions:

1. All zero rows (consisting entirely of zeros) are at the bottom.

2. The first nonzero entry from the left in each nonzero row is a 1, called the leading 1
for that row.

3. Each leading 1 is to the right of all leading 1s in the rows above it.

A row-echelon matrix is said to be in reduced row-echelon form (and will be called a
reduced row-echelon matrix) if, in addition, it satisfies the following condition:

4. Each leading 1 is the only nonzero entry in its column.

The row-echelon matrices have a “staircase” form, as indicated by the following example (the
asterisks indicate arbitrary numbers).

0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗
0 0 0 0 1 ∗ ∗
0 0 0 0 0 0 1
0 0 0 0 0 0 0


The leading 1s proceed “down and to the right” through the matrix. Entries above and to the right
of the leading 1s are arbitrary, but all entries below and to the left of them are zero. Hence, a
matrix in row-echelon form is in reduced form if, in addition, the entries directly above each leading
1 are all zero. Note that a matrix in row-echelon form can, with a few more row operations, be
carried to reduced form (use row operations to create zeros above each leading one in succession,
beginning from the right).
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Example 1.2.1

The following matrices are in row-echelon form (for any choice of numbers in ∗-positions).

[
1 ∗ ∗
0 0 1

] 0 1 ∗ ∗
0 0 1 ∗
0 0 0 0

 1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 1

 1 ∗ ∗
0 1 ∗
0 0 1


The following, on the other hand, are in reduced row-echelon form.

[
1 ∗ 0
0 0 1

] 0 1 0 ∗
0 0 1 ∗
0 0 0 0

 1 0 ∗ 0
0 1 ∗ 0
0 0 0 1

 1 0 0
0 1 0
0 0 1


The choice of the positions for the leading 1s determines the (reduced) row-echelon form
(apart from the numbers in ∗-positions).

The importance of row-echelon matrices comes from the following theorem.

Theorem 1.2.1
Every matrix can be brought to (reduced) row-echelon form by a sequence of elementary
row operations.

In fact we can give a step-by-step procedure for actually finding a row-echelon matrix. Observe
that while there are many sequences of row operations that will bring a matrix to row-echelon form,
the one we use is systematic and is easy to program on a computer. Note that the algorithm deals
with matrices in general, possibly with columns of zeros.

Gaussian3Algorithm4

Step 1. If the matrix consists entirely of zeros, stop—it is already in row-echelon form.

Step 2. Otherwise, find the first column from the left containing a nonzero entry (call
it a), and move the row containing that entry to the top position.

Step 3. Now multiply the new top row by 1/a to create a leading 1.

Step 4. By subtracting multiples of that row from rows below it, make each entry
below the leading 1 zero.

This completes the first row, and all further row operations are carried out on the remaining
rows.

Step 5. Repeat steps 1–4 on the matrix consisting of the remaining rows.

The process stops when either no rows remain at step 5 or the remaining rows consist
entirely of zeros.
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Observe that the gaussian algorithm is recursive: When the first leading 1 has been obtained,
the procedure is repeated on the remaining rows of the matrix. This makes the algorithm easy to
use on a computer. Note that the solution to Example 1.1.3 did not use the gaussian algorithm as
written because the first leading 1 was not created by dividing row 1 by 3. The reason for this is
that it avoids fractions. However, the general pattern is clear: Create the leading 1s from left to
right, using each of them in turn to create zeros below it. Here are two more examples.

Example 1.2.2

Solve the following system of equations.
3x+ y− 4z=−1
x + 10z= 5

4x+ y+ 6z= 1

Solution. The corresponding augmented matrix is 3 1 −4 −1
1 0 10 5
4 1 6 1


Create the first leading one by interchanging rows 1 and 2 1 0 10 5

3 1 −4 −1
4 1 6 1


Now subtract 3 times row 1 from row 2, and subtract 4 times row 1 from row 3. The result is 1 0 10 5

0 1 −34 −16
0 1 −34 −19


Now subtract row 2 from row 3 to obtain 1 0 10 5

0 1 −34 −16
0 0 0 −3


This means that the following reduced system of equations

x + 10z= 5
y− 34z=−16

0= −3

is equivalent to the original system. In other words, the two have the same solutions. But
this last system clearly has no solution (the last equation requires that x, y and z satisfy
0x+0y+0z =−3, and no such numbers exist). Hence the original system has no solution.

3Carl Friedrich Gauss (1777–1855) ranks with Archimedes and Newton as one of the three greatest mathematicians
of all time. He was a child prodigy and, at the age of 21, he gave the first proof that every polynomial has a complex
root. In 1801 he published a timeless masterpiece, Disquisitiones Arithmeticae, in which he founded modern number
theory. He went on to make ground-breaking contributions to nearly every branch of mathematics, often well before
others rediscovered and published the results.

4The algorithm was known to the ancient Chinese.
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Example 1.2.3

Solve the following system of equations.
x1 − 2x2 − x3 + 3x4 = 1

2x1 − 4x2 + x3 = 5
x1 − 2x2 + 2x3 − 3x4 = 4

Solution. The augmented matrix is 1 −2 −1 3 1
2 −4 1 0 5
1 −2 2 −3 4


Subtracting twice row 1 from row 2 and subtracting row 1 from row 3 gives 1 −2 −1 3 1

0 0 3 −6 3
0 0 3 −6 3


Now subtract row 2 from row 3 and multiply row 2 by 1

3 to get 1 −2 −1 3 1
0 0 1 −2 1
0 0 0 0 0


This is in row-echelon form, and we take it to reduced form by adding row 2 to row 1: 1 −2 0 1 2

0 0 1 −2 1
0 0 0 0 0


The corresponding reduced system of equations is

x1 − 2x2 + x4 = 2
x3 − 2x4 = 1

0= 0

The leading ones are in columns 1 and 3 here, so the corresponding variables x1 and x3 are
called leading variables. Because the matrix is in reduced row-echelon form, these equations
can be used to solve for the leading variables in terms of the nonleading variables x2 and x4.
More precisely, in the present example we set x2 = s and x4 = t where s and t are arbitrary,
so these equations become

x1 −2s+ t = 2 and x3 −2t = 1

Finally the solutions are given by

x1 = 2+2s− t
x2 = s
x3 = 1+2t
x4 = t

where s and t are arbitrary.



20 CONTENTS

The solution of Example 1.2.3 is typical of the general case. To solve a linear system, the
augmented matrix is carried to reduced row-echelon form, and the variables corresponding to the
leading ones are called leading variables. Because the matrix is in reduced form, each leading
variable occurs in exactly one equation, so that equation can be solved to give a formula for the
leading variable in terms of the nonleading variables. It is customary to call the nonleading variables
“free” variables, and to label them by new variables s, t, . . . , called parameters. Hence, as in
Example 1.2.3, every variable xi is given by a formula in terms of the parameters s and t. Moreover,
every choice of these parameters leads to a solution to the system, and every solution arises in this
way. This procedure works in general, and has come to be called

Gaussian Elimination
To solve a system of linear equations proceed as follows:

1. Carry the augmented matrix to a reduced row-echelon matrix using elementary row
operations.

2. If a row
[

0 0 0 · · · 0 1
]

occurs, the system is inconsistent.

3. Otherwise, assign the nonleading variables (if any) as parameters, and use the
equations corresponding to the reduced row-echelon matrix to solve for the leading
variables in terms of the parameters.

There is a variant of this procedure, wherein the augmented matrix is carried only to row-echelon
form. The nonleading variables are assigned as parameters as before. Then the last equation
(corresponding to the row-echelon form) is used to solve for the last leading variable in terms of the
parameters. This last leading variable is then substituted into all the preceding equations. Then,
the second last equation yields the second last leading variable, which is also substituted back. The
process continues to give the general solution. This procedure is called back-substitution. This
procedure can be shown to be numerically more efficient and so is important when solving very
large systems.5

Example 1.2.4

Find a condition on the numbers a, b, and c such that the following system of equations is
consistent. When that condition is satisfied, find all solutions (in terms of a, b, and c).

x1 + 3x2 + x3 = a
−x1 − 2x2 + x3 = b
3x1 + 7x2 − x3 = c

Solution. We use gaussian elimination except that now the augmented matrix 1 3 1 a
−1 −2 1 b

3 7 −1 c


5With n equations where n is large, gaussian elimination requires roughly n3/2 multiplications and divisions,

whereas this number is roughly n3/3 if back substitution is used.
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has entries a, b, and c as well as known numbers. The first leading one is in place, so we
create zeros below it in column 1:  1 3 1 a

0 1 2 a+b
0 −2 −4 c−3a


The second leading 1 has appeared, so use it to create zeros in the rest of column 2: 1 0 −5 −2a−3b

0 1 2 a+b
0 0 0 c−a+2b


Now the whole solution depends on the number c−a+2b = c− (a−2b). The last row
corresponds to an equation 0 = c− (a−2b). If c 6= a−2b, there is no solution (just as in
Example 1.2.2). Hence:

The system is consistent if and only if c = a−2b.

In this case the last matrix becomes 1 0 −5 −2a−3b
0 1 2 a+b
0 0 0 0


Thus, if c = a−2b, taking x3 = t where t is a parameter gives the solutions

x1 = 5t − (2a+3b) x2 = (a+b)−2t x3 = t.

Rank

It can be proven that the reduced row-echelon form of a matrix A is uniquely determined by A. That
is, no matter which series of row operations is used to carry A to a reduced row-echelon matrix, the
result will always be the same matrix. (A proof is given at the end of Section 2.5.) By contrast, this
is not true for row-echelon matrices: Different series of row operations can carry the same matrix A

to different row-echelon matrices. Indeed, the matrix A =

[
1 −1 4
2 −1 2

]
can be carried (by one row

operation) to the row-echelon matrix
[

1 −1 4
0 1 −6

]
, and then by another row operation to the

(reduced) row-echelon matrix
[

1 0 −2
0 1 −6

]
. However, it is true that the number r of leading 1s

must be the same in each of these row-echelon matrices (this will be proved in Chapter 5). Hence,
the number r depends only on A and not on the way in which A is carried to row-echelon form.
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Definition 1.4 Rank of a Matrix
The rank of matrix A is the number of leading 1s in any row-echelon matrix to which A can
be carried by row operations.

Example 1.2.5

Compute the rank of A =

 1 1 −1 4
2 1 3 0
0 1 −5 8

.

Solution. The reduction of A to row-echelon form is

A =

 1 1 −1 4
2 1 3 0
0 1 −5 8

→

 1 1 −1 4
0 −1 5 −8
0 1 −5 8

→

 1 1 −1 4
0 1 −5 8
0 0 0 0


Because this row-echelon matrix has two leading 1s, rank A = 2.

Suppose that rank A= r, where A is a matrix with m rows and n columns. Then r ≤m because the
leading 1s lie in different rows, and r ≤ n because the leading 1s lie in different columns. Moreover,
the rank has a useful application to equations. Recall that a system of linear equations is called
consistent if it has at least one solution.

Theorem 1.2.2
Suppose a system of m equations in n variables is consistent, and that the rank of the
augmented matrix is r.

1. The set of solutions involves exactly n− r parameters.

2. If r < n, the system has infinitely many solutions.

3. If r = n, the system has a unique solution.

Proof. The fact that the rank of the augmented matrix is r means there are exactly r leading
variables, and hence exactly n− r nonleading variables. These nonleading variables are all assigned
as parameters in the gaussian algorithm, so the set of solutions involves exactly n− r parameters.
Hence if r < n, there is at least one parameter, and so infinitely many solutions. If r = n, there are
no parameters and so a unique solution.

Theorem 1.2.2 shows that, for any system of linear equations, exactly three possibilities exist:

1. No solution. This occurs when a row
[

0 0 · · · 0 1
]

occurs in the row-echelon form.
This is the case where the system is inconsistent.

2. Unique solution. This occurs when every variable is a leading variable.
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3. Infinitely many solutions. This occurs when the system is consistent and there is at least one
nonleading variable, so at least one parameter is involved.

Example 1.2.6

Suppose the matrix A in Example 1.2.5 is the augmented matrix of a system of m = 3 linear
equations in n = 3 variables. As rank A = r = 2, the set of solutions will have n− r = 1
parameter. The reader can verify this fact directly.

Many important problems involve linear inequalities rather than linear equations. For
example, a condition on the variables x and y might take the form of an inequality 2x− 5y ≤ 4
rather than an equality 2x− 5y = 4. There is a technique (called the simplex algorithm) for
finding solutions to a system of such inequalities that maximizes a function of the form p = ax+by
where a and b are fixed constants.

Exercises for 1.2

Exercise 1.2.1 Which of the following matrices
are in reduced row-echelon form? Which are in row-
echelon form? 1 −1 2

0 0 0
0 0 1

a)
[

2 1 −1 3
0 0 0 0

]
b)

[
1 −2 3 5
0 0 0 1

]
c)

 1 0 0 3 1
0 0 0 1 1
0 0 0 0 1

d)

[
1 1
0 1

]
e)

 0 0 1
0 0 1
0 0 1

f)

b. No, no

d. No, yes

f. No, no

Exercise 1.2.2 Carry each of the following matri-
ces to reduced row-echelon form.

a.


0 −1 2 1 2 1 −1
0 1 −2 2 7 2 4
0 −2 4 3 7 1 0
0 3 −6 1 6 4 1



b.


0 −1 3 1 3 2 1
0 −2 6 1 −5 0 −1
0 3 −9 2 4 1 −1
0 1 −3 −1 3 0 1



b.


0 1 −3 0 0 0 0
0 0 0 1 0 0 −1
0 0 0 0 1 0 0
0 0 0 0 0 1 1



Exercise 1.2.3 The augmented matrix of a system
of linear equations has been carried to the following
by row operations. In each case solve the system.

a.


1 2 0 3 1 0 −1
0 0 1 −1 1 0 2
0 0 0 0 0 1 3
0 0 0 0 0 0 0



b.


1 −2 0 2 0 1 1
0 0 1 5 0 −3 −1
0 0 0 0 1 6 1
0 0 0 0 0 0 0
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c.


1 2 1 3 1 1
0 1 −1 0 1 1
0 0 0 1 −1 0
0 0 0 0 0 0



d.


1 −1 2 4 6 2
0 1 2 1 −1 −1
0 0 0 1 0 1
0 0 0 0 0 0



b. x1 = 2r − 2s− t + 1, x2 = r, x3 = −5s+ 3t − 1,
x4 = s, x5 =−6t +1, x6 = t

d. x1 =−4s−5t−4, x2 =−2s+t−2, x3 = s, x4 = 1,
x5 = t

Exercise 1.2.4 Find all solutions (if any) to each
of the following systems of linear equations.

x− 2y= 1
4y− x=−2

a) 3x− y= 0
2x− 3y= 1

b)

2x+ y= 5
3x+ 2y= 6

c) 3x− y= 2
2y− 6x=−4

d)

3x− y= 4
2y− 6x= 1

e) 2x− 3y= 5
3y− 2x= 2

f)

b. x =−1
7 , y =−3

7

d. x = 1
3(t +2), y = t

f. No solution

Exercise 1.2.5 Find all solutions (if any) to each
of the following systems of linear equations.

x+ y+ 2z= 8
3x− y+ z= 0
−x+ 3y+ 4z=−4

a) −2x+ 3y+ 3z= −9
3x− 4y+ z= 5

−5x+ 7y+ 2z=−14

b)

x+ y− z= 10
−x+ 4y+ 5z=−5

x+ 6y+ 3z= 15

c) x+ 2y− z= 2
2x+ 5y− 3z= 1
x+ 4y− 3z= 3

d)

5x+ y = 2
3x− y+ 2z= 1
x+ y− z= 5

e) 3x− 2y+ z=−2
x− y+ 3z= 5

−x+ y+ z=−1

f)

x+ y+ z= 2
x + z= 1

2x+ 5y+ 2z= 7

g) x+ 2y− 4z= 10
2x− y+ 2z= 5
x+ y− 2z= 7

h)

b. x =−15t −21, y =−11t −17, z = t

d. No solution

f. x =−7, y =−9, z = 1

h. x = 4, y = 3+2t, z = t

Exercise 1.2.6 Express the last equation of each
system as a sum of multiples of the first two equa-
tions. [Hint: Label the equations, use the gaussian
algorithm.]

x1 + x2 + x3 = 1
2x1 − x2 + 3x3 = 3
x1 − 2x2 + 2x3 = 2

a) x1 + 2x2 − 3x3 = −3
x1 + 3x2 − 5x3 = 5
x1 − 2x2 + 5x3 =−35

b)

b. Denote the equations as E1, E2, and E3. Ap-
ply gaussian elimination to column 1 of the
augmented matrix, and observe that E3−E1 =
−4(E2 −E1). Hence E3 = 5E1 −4E2.

Exercise 1.2.7 Find all solutions to the following
systems.

a. 3x1 + 8x2 − 3x3 − 14x4 = 2
2x1 + 3x2 − x3 − 2x4 = 1
x1 − 2x2 + x3 + 10x4 = 0
x1 + 5x2 − 2x3 − 12x4 = 1

b. x1 − x2 + x3 − x4 = 0
−x1 + x2 + x3 + x4 = 0

x1 + x2 − x3 + x4 = 0
x1 + x2 + x3 + x4 = 0

c. x1 − x2 + x3 − 2x4 = 1
−x1 + x2 + x3 + x4 =−1
−x1 + 2x2 + 3x3 − x4 = 2

x1 − x2 + 2x3 + x4 = 1

d. x1 + x2 + 2x3 − x4 = 4
3x2 − x3 + 4x4 = 2

x1 + 2x2 − 3x3 + 5x4 = 0
x1 + x2 − 5x3 + 6x4 =−3
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b. x1 = 0, x2 =−t, x3 = 0, x4 = t

d. x1 = 1, x2 = 1− t, x3 = 1+ t, x4 = t

Exercise 1.2.8 In each of the following, find (if
possible) conditions on a and b such that the system
has no solution, one solution, and infinitely many
solutions.

x− 2y= 1
ax+ by= 5

a) x+ by=−1
ax+ 2y= 5

b)

x− by=−1
x+ ay= 3

c) ax+ y= 1
2x+ y= b

d)

b. If ab 6= 2, unique solution x = −2−5b
2−ab , y = a+5

2−ab .
If ab = 2: no solution if a 6=−5; if a =−5, the
solutions are x =−1+ 2

5 t, y = t.

d. If a 6= 2, unique solution x = 1−b
a−2 , y = ab−2

a−2 . If
a = 2, no solution if b 6= 1; if b = 1, the solu-
tions are x = 1

2(1− t), y = t.

Exercise 1.2.9 In each of the following, find (if
possible) conditions on a, b, and c such that the sys-
tem has no solution, one solution, or infinitely many
solutions.

3x+ y− z= a
x− y+ 2z= b

5x+ 3y− 4z= c

a) 2x+ y− z= a
2y+ 3z= b

x − z= c

b)

−x+ 3y+ 2z=−8
x + z= 2

3x+ 3y+ az= b

c) x+ay= 0
y+bz= 0
z+ cx= 0

d)

3x− y+ 2z= 3
x+ y− z= 2

2x− 2y+ 3z= b

e)

x+ ay− z= 1
−x+ (a−2)y+ z=−1
2x+ 2y+ (a−2)z= 1

f)

b. Unique solution x =−2a+b+5c,
y = 3a−b−6c, z =−2a+b+c, for any a, b, c.

d. If abc 6= −1, unique solution x = y = z = 0; if
abc = −1 the solutions are x = abt, y = −bt,
z = t.

f. If a = 1, solutions x = −t, y = t, z = −1. If
a = 0, there is no solution. If a 6= 1 and a 6= 0,
unique solution x = a−1

a , y = 0, z = −1
a .

Exercise 1.2.10 Find the rank of each of the ma-
trices in Exercise 1.2.1.

b. 1

d. 3

f. 1

Exercise 1.2.11 Find the rank of each of the fol-
lowing matrices. 1 1 2

3 −1 1
−1 3 4

a)

 −2 3 3
3 −4 1

−5 7 2

b)

 1 1 −1 3
−1 4 5 −2

1 6 3 4

c)

 3 −2 1 −2
1 −1 3 5

−1 1 1 −1

d)

 1 2 −1 0
0 a 1−a a2 +1
1 2−a −1 −2a2

e)

 1 1 2 a2

1 1−a 2 0
2 2−a 6−a 4

f)

b. 2

d. 3

f. 2 if a = 0 or a = 2; 3, otherwise.

Exercise 1.2.12 Consider a system of linear equa-
tions with augmented matrix A and coefficient ma-
trix C. In each case either prove the statement or
give an example showing that it is false.

a. If there is more than one solution, A has a row
of zeros.
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b. If A has a row of zeros, there is more than one
solution.

c. If there is no solution, the reduced row-echelon
form of C has a row of zeros.

d. If the row-echelon form of C has a row of zeros,
there is no solution.

e. There is no system that is inconsistent for ev-
ery choice of constants.

f. If the system is consistent for some choice of
constants, it is consistent for every choice of
constants.

Now assume that the augmented matrix A has 3 rows
and 5 columns.

g. If the system is consistent, there is more than
one solution.

h. The rank of A is at most 3.

i. If rank A = 3, the system is consistent.

j. If rank C = 3, the system is consistent.

b. False. A =

 1 0 1
0 1 1
0 0 0



d. False. A =

 1 0 1
0 1 0
0 0 0


f. False. 2x− y= 0

−4x+2y= 0
is consistent but

2x− y= 1
−4x+2y= 1

is not.

h. True, A has 3 rows, so there are at most 3
leading 1s.

Exercise 1.2.13 Find a sequence of row operations
carrying b1 + c1 b2 + c2 b3 + c3

c1 +a1 c2 +a2 c3 +a3
a1 +b1 a2 +b2 a3 +b3

to

 a1 a2 a3
b1 b2 b3
c1 c2 c3


Exercise 1.2.14 In each case, show that the re-
duced row-echelon form is as given.

a.

 p 0 a
b 0 0
q c r

 with abc 6= 0;

 1 0 0
0 1 0
0 0 1



b.

 1 a b+ c
1 b c+a
1 c a+b

 where c 6= a or b 6= a; 1 0 ∗
0 1 ∗
0 0 0



b. Since one of b− a and c− a is nonzero, then 1 a b+ c
1 b c+a
1 b c+a

 →

 1 a b+ c
0 b−a a−b
0 c−a a− c

 → 1 a b+ c
0 1 −1
0 0 0

→

 1 0 b+ c+a
0 1 −1
0 0 0



Exercise 1.2.15 Show that
{

az+ by+ cz= 0
a1x+ b1y+ c1z= 0

always has a solution other than x = 0, y = 0, z = 0.

Exercise 1.2.16 Find the circle x2 +y2 +ax+by+
c = 0 passing through the following points.

a. (−2, 1), (5, 0), and (4, 1)

b. (1, 1), (5, −3), and (−3, −3)

b. x2 + y2 −2x+6y−6 = 0

Exercise 1.2.17 Three Nissans, two Fords, and
four Chevrolets can be rented for $106 per day. At
the same rates two Nissans, four Fords, and three
Chevrolets cost $107 per day, whereas four Nissans,
three Fords, and two Chevrolets cost $102 per day.
Find the rental rates for all three kinds of cars.

Exercise 1.2.18 A school has three clubs and each
student is required to belong to exactly one club.
One year the students switched club membership as
follows: Club A. 4

10 remain in A, 1
10 switch to B, 5

10
switch to C. Club B. 7

10 remain in B, 2
10 switch to A,
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1
10 switch to C. Club C. 6

10 remain in C, 2
10 switch

to A, 2
10 switch to B. If the fraction of the student

population in each club is unchanged, find each of
these fractions.
5
20 in A, 7

20 in B, 8
20 in C.

Exercise 1.2.19 Given points (p1, q1), (p2, q2),
and (p3, q3) in the plane with p1, p2, and p3 dis-
tinct, show that they lie on some curve with equation
y = a+bx+ cx2. [Hint: Solve for a, b, and c.]

Exercise 1.2.20 The scores of three players in a
tournament have been lost. The only information
available is the total of the scores for players 1 and
2, the total for players 2 and 3, and the total for
players 3 and 1.

a. Show that the individual scores can be redis-
covered.

b. Is this possible with four players (knowing the
totals for players 1 and 2, 2 and 3, 3 and 4,
and 4 and 1)?

Exercise 1.2.21 A boy finds $1.05 in dimes, nick-
els, and pennies. If there are 17 coins in all, how
many coins of each type can he have?

Exercise 1.2.22 If a consistent system has more
variables than equations, show that it has infinitely
many solutions. [Hint: Use Theorem 1.2.2.]
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